How To Survey 5G and LTE Networks Efficiently: Stepping Beyond Network Testing

Wireless networks, especially LTE and 5G, play a pivotal role in our increasingly connected world. Efficient surveying and testing of these networks is essential for optimal performance and reliability. This article explores the key benefits, challenges, and strategies for mastering effective wireless network surveying, with a focus on simplicity and cost-effectiveness. 

1. Why We Survey 5G and LTE Networks 

5G and LTE network surveying serves as an indispensable requirement for several reasons. It contributes to the optimization of network performance by providing insights into signal strength, coverage areas, and potential interference, allowing engineers to enhance overall network efficiency. Additionally, it plays a crucial role in troubleshooting and maintenance, enabling proactive identification and resolution of network issues, and minimizing downtime. 

Capacity planning is another critical aspect where LTE and 5G surveying shines. It helps determine network performance in areas with potential high capacity, allowing for optimal resource allocation and meeting the growing demand. Moreover, network surveying offers valuable insights during the initial design phase, post-installation validation, and subsequent expansion projects, while ensuring precise planning and efficient use of resources. 

2. Key Benefits of Network Surveying 

a. Network Performance Optimization: Network surveys verify signal strength and coverage and identify interference, ensuring a seamless user experience. By collecting key data, wireless engineers optimize network performance. 

b. Troubleshooting and Maintenance: Regular surveys proactively address network issues like signal degradation, interference challenges, and coverage gaps, minimizing downtime and extending infrastructure lifespan. 

c. Efficient Capacity Planning: Survey data is foundational for efficient capacity planning in high-density areas, managing handoff zones, and optimizing resources to meet growing demand effectively. 

d. Streamlined Network Design and Expansion: Network surveying offers insights from design to expansion, ensuring precise planning and efficient resource utilization. This streamlined approach contributes to successful initiatives and minimizes change orders from equipment placement to address dominance over macro coverage and poor overlap zones. 

e. Cost Savings and Time Efficiency: Network surveying contributes to significant cost savings and time efficiency by detecting issues early, reducing operational costs, and streamlining processes. This cost-effective approach enhances overall network efficiency.  The resolution of network discrepancies increases exponentially the further along the project lifecycle it takes for discovery. 

3. Challenges with 5G and LTE Surveying 

Conducting surveys for LTE and 5G networks is pivotal for optimal performance and reliability. However, technological advancements bring forth multifaceted challenges that demand attention. 

Complexity of Current Solutions: In the dynamic world of wireless network planning, existing tools fall short in complexity as networks evolve. Evolved technologies create a disconnect between solutions, demanding a reassessment of tool suitability and capability. 

Operational Hurdles: Beyond technical challenges, operational complexities arise. Navigating new environments, addressing aesthetic challenges, and adapting to evolving demands for various applications add layers of difficulty to effective survey execution. 

Heavy and Disjointed Tools: Many available solutions are characterized by their heaviness and lack of cohesion. Cumbersome tools hinder maneuverability, impacting the effectiveness of the test and survey and contributing to challenges faced by field technicians and IT teams. 

Financial Implications: The repercussions of using complex disjointed tools extend to financial aspects. Network surveying and testing become more expensive with extensive training requirements and potential errors during operation. Overcoming these challenges necessitates a shift towards simpler, cohesive tools, prioritizing both operational efficiency and cost-effectiveness. 

Wireless network survey challenges encompass technical, operational, and financial considerations. Streamlining the survey process involves strategic tool choices, emphasizing simplicity, employing cohesiveness, and empowering field technicians. As connectivity evolves, proactive solutions are necessary to master effective tests and surveys. 

4. Mastering Effective Wireless Network Surveying

Achieving proficiency in wireless network surveying and testing involves strategic planning, efficient tools, and insightful analysis. Here is a comprehensive breakdown: 

Testing vs Surveying: 

Testing the network can be done simply with an end-user device.  Verifying the device can access the network, transmit and receive voice or data, and handoff between RF (Radio Frequency) signal sources is testing the network, but it is not enough.  Even though end-user devices may be able to display critical key performance indicators (KPIs), capturing that test data for further analysis on a map/floorplan is surveying. 

Surveying is only as good as the test data captured, but adding clearly mapped critical area annotations with as much information as is available makes a good survey great.  Great surveys create efficiency in the life cycle of the project from design to deployment, ongoing maintenance, and future expansion. 

Essential Steps Before the Survey: 

Prior to initiating a survey, meticulous preparation is essential. Understanding the deployment environment, the network technology of service, and the end-user device capabilities are critical fundamentals, then identifying potential interference sources and establishing a clear survey plan is foundational. This phase acts as a compass, guiding technicians through the intricacies of the test and survey. It also involves verifying the network design to ensure alignment with the intended deployment goals. 

During the Survey: 

Optimizing the survey process requires employing lightweight, powerful tools for simultaneous channel scanning. This approach ensures a swift yet comprehensive analysis of active frequencies, providing real-time insights. The emphasis is on empowering field technicians with tools that elevate the survey process strategically. Implementing a blind scan at the beginning of the survey can verify the intended signals and uncover unexpected interference or anomalies, contributing to a more robust process. 

Performing 5G and LTE network survey
Performing a blind scan

Post-Survey Analysis: 

The post-survey phase involves a thorough examination of collected data, scrutinizing signal strength, coverage areas, and potential interference. Identifying areas for improvement becomes a strategic roadmap for enhancing network performance. This analysis is not just routine; it is a diagnostic tool ensuring optimal network functioning. Ongoing maintenance checks, including periodic blind scans, are crucial to identifying evolving network challenges and maintaining peak performance. 

Analyzing 5G and LTE survey results

Efficient Process: 

Streamlining the network survey process goes beyond tool selection. It involves seamlessly integrating tools into the workflow, minimizing field setup time, capturing geolocated test and survey notations efficiently, and eliminating post-processing complexities. This comprehensive approach provides instant access to survey data, enhancing overall efficiency. It also incorporates the validation of network designs during and after the survey, ensuring they align with performance objectives. 

Mastering effective wireless network evaluation for LTE and 5G demands a comprehensive approach that encompasses meticulous preparation, empowered testing, efficient surveying, insightful analysis, including blind scans, ongoing maintenance checks, and strategic validation of network designs. It is about strategically navigating challenges, saving time, and ensuring optimal network performance in the dynamic landscape of connectivity technologies. 

5. How iBwave Helps Streamline 5G and LTE Surveys 

When surveying LTE and 5G networks, our easy-to-use app, iBwave Mobile, along with the lightweight and powerful Epiq PRiSM scanner, emerges as the simplest and most cost-effective tool. It enables you to save time and costs thanks to eliminated post-processing, survey multiple technologies at once, and determine interference and active frequencies with a spectrum analyzer.  

Elevate your network surveying with iBwave and unlock massive cost and time savings! Learn more about our seamless survey solution here

You can also watch our full 5G survey demo video below!

Conclusion

Efficient 5G and LTE network surveys are indispensable for maintaining optimal performance and reliability in today’s dynamic connectivity landscape. Embracing simplified survey and test techniques and leveraging advanced tools like iBwave’s solution ensures seamless network design, deployment, and management. As networks evolve, mastering effective surveys requires proactive solutions to overcome challenges, save time, and ensure optimal performance. 

Building a Private Network: Step by Step

In today’s digitally driven world, establishing a private network is a strategic move for many enterprises. The demand for seamless, secure, and reliable connectivity has led organizations to explore the benefits of owning and controlling their network infrastructure. This comprehensive guide will take you through the process of building a private network, emphasizing the significance of each step.

Understanding Private Networks

Before delving into the steps of building a private network, let’s clarify what exactly a private network entails. A private network, in the realm of wireless communication, is an exclusive network infrastructure owned, operated, and managed by a single entity, typically an organization or enterprise. These networks differ significantly from public networks like Wi-Fi hotspots or cellular networks.

Why Enterprises Choose Private Networks

  1. Enhanced Security: Security is paramount in the digital age. Private networks offer a heightened level of security by encrypting data transmission, mitigating the risks of unauthorized access and data breaches.
  2. Reliable Connectivity: Private networks allow organizations to maintain control over network traffic, ensuring consistent, reliable connectivity even in high-demand scenarios.
  3. Low Latency: For applications requiring minimal delay, such as real-time video conferencing and industrial automation, private networks can be optimized for low-latency communication.
  4. Customization and Control: With private networks, enterprises enjoy complete control over network design, configuration, and management, enabling tailor-made solutions to meet specific needs.

Read about the importance of Private 5G for Enterprises in our blog!

Key Components for Effective Deployment

Successful deployments of private networks demand meticulous planning and execution. Essential components and considerations include:

  1. Spectrum Allocation: Allocate the appropriate frequency spectrum to your private network to prevent interference and maximize performance.
  2. Infrastructure Investment: Invest in high-quality network equipment, including access points, switches, and routers, to support your network’s capacity and coverage requirements.
  3. Security Measures: Implement robust security protocols, such as firewalls, intrusion detection systems, and encryption, to safeguard your network from potential threats.
  4. Scalability: Design a network that can easily accommodate future growth, ensuring that it remains adaptable and cost-effective.

Main Use Cases and Verticals

Private networks find applications across various industries and verticals:

  1. Mining: Private networks in mining optimize operations, providing real-time data, safety, and control in remote and rugged environments.
  2. Manufacturing: In manufacturing, private networks support automation, process efficiency, and quality control, ensuring seamless production processes.
  3. Energy: Private networks in the energy sector enhance grid management, enable smart meters, and bolster renewable energy integration.
  4. Oil & Gas: In the oil & gas industry, private networks ensure secure communications, asset tracking, and monitoring in remote and hazardous locations.
  5. Education: Educational institutions benefit from private networks by delivering high-speed internet access and supporting e-learning initiatives.
  6. Healthcare: Private networks in healthcare enable secure patient data management, telemedicine, and real-time communication among healthcare professionals.
  7. Transportation & Logistics: The logistics and transport industry is transforming as a result of a wide variety of industry trends and challenges. These drive demand for 5G both directly and indirectly.

Step-by-Step Guide to Building a Private Network

1. Site Survey: The Foundation

A site survey is pivotal for private network success. It involves a comprehensive assessment of the physical environment, including aspects like building layout, materials used, and potential sources of interference. The data collected during this critical phase forms the bedrock upon which the entire network deployment rests. It ensures that subsequent design decisions are well-informed, guaranteeing that the network meets the exacting requirements for both coverage and performance.

2. Evaluation/Feasibility: Setting Realistic Expectations

Before taking the leap into network deployment, it’s essential to conduct a feasibility study. This study is a reality check for your private network project. It takes into account various factors, including budget constraints, regulatory requirements, and the availability of skilled personnel. By conducting this in-depth analysis, you can make informed decisions and set realistic expectations for your project’s scope and timeline.

3. Network Design: The Heart of the Project

The network design phase is where the magic happens. It’s the heart of your project, where you define the architecture, topology, and capacity of your private network. During this critical phase, the careful placement of access points, antennas, and other network components is meticulously planned. The goal is to ensure not only optimal coverage but also peak performance. A well-thought-out network design sets the stage for achieving your connectivity goals and lays the foundation for seamless network operations.

4. Cost Calculation: A Clear Budget

Budgeting is a crucial aspect of private network deployment. It’s essential to calculate the total cost of ownership (TCO) accurately. This includes accounting for equipment costs, installation expenses, ongoing maintenance, and operational costs. Having a well-defined budget is not just about financial planning; it’s about securing the necessary funding and allocating resources effectively. It ensures that your private network project remains on track, both financially and operationally.

5. Network Deployment: Turning Plans into Reality

After meticulous planning, it’s time to turn your network design into a tangible reality. During the deployment phase, you’ll install and configure network equipment as per the design plan. This is the hands-on phase where the blueprint comes to life. It’s imperative that all components function correctly, and the network meets the specified performance criteria. Effective network deployment is the bridge that connects planning to real-world functionality.

6. Testing: Ensuring Reliability

Comprehensive testing is the litmus test for your private network. It’s not enough to have a network; you must ensure it performs flawlessly. Testing covers various aspects, including coverage, capacity, and reliability under different conditions. It’s during this phase that any issues are identified and addressed promptly. Thorough testing guarantees that your network is not just functional but reliable and capable of meeting the demands placed upon it.

7. Monitoring and Maintenance: Sustaining Excellence

Network deployment is not the end; it’s a continuous journey. Once your private network is operational, it’s crucial to establish a routine for monitoring and maintenance. Regularly monitoring network performance, addressing issues promptly, and applying updates and security patches are all part of sustaining a secure and reliable network. This ongoing vigilance ensures that your network remains in peak condition, delivering the excellence it was designed for.

Leveraging iBwave for Network Excellence

As you embark on the journey of building a private network, consider the invaluable support provided by iBwave, a leading expert in wireless network survey and design. iBwave offers high-quality tools and software that simplify the network design and survey process, elevating the accuracy and efficiency of your network deployment.

By utilizing iBwave’s solutions, you can ensure that your private network is designed and implemented to the highest standards, bolstering your confidence in its connectivity capabilities. You can either use iBwave Private Networks to seamlessly design your Private LTE, 5G and Wi-Fi Networks or iBwave Design for designing more complex venues! With iBwave, you get everything you need to plan and deliver reliable indoor and outdoor campus private networks under one roof. Learn more about our solutions here!

Conclusion

Building a private network demands meticulous planning and execution, with each step playing a pivotal role in its success. Private networks offer enhanced security, reliability, low latency, and customization, making them an ideal choice for various industries and applications. Whether you operate in manufacturing, healthcare, education, utilities, or any other sector, a well-designed private network can revolutionize your connectivity capabilities, supporting your enterprise’s growth.

Remember that iBwave’s advanced tools and software significantly streamline the network design and survey process, ensuring the highest quality results for your private network deployment. Armed with the right approach and the right tools, your private network will become a formidable asset, providing the connectivity essential for thriving in today’s digital age.
Remember that iBwave’s advanced tools and software significantly streamline the network design and survey process, ensuring the highest quality results for your private network deployment. Armed with the right approach and the right tools, your private network will become a formidable asset, providing the connectivity essential for thriving in today’s digital age.

Visit our blog page to learn more about wireless networks and how to design them efficiently!

5G vs. Multiple Network Technologies: Enterprise Connectivity Dilemma 

In the ever-evolving landscape of connectivity solutions, enterprises face a pivotal decision – whether to embrace the promise of 5G or deploy a blend of multiple network technologies. While the allure of a 5G-centric future is undeniable, practical considerations and real-world complexities necessitate a more nuanced approach. This article delves into the key factors that influence the choice between deploying 5G and integrating multiple network technologies, exploring use cases, considerations, and future trends. 

The Complex Reality of Enterprise Connectivity 

The widespread anticipation surrounding 5G’s transformative potential is undeniable. However, the practical reality is far more intricate. Enterprises operate within a realm where a myriad of connectivity solutions coexist, each catering to unique demands. Wi-Fi, IoT-dedicated systems, Bluetooth, and others are evolving alongside 5G, presenting a diverse ecosystem of options. 

The notion of a 5G “monoculture” is compelling, but it clashes with a host of commercial, technical, and regulatory constraints. These constraints encompass legacy systems that perform well, lack of suitable 5G devices for IoT, frequency band limitations, higher costs, certification requirements, skill shortages, geopolitical restrictions, and more. These realities necessitate a thorough evaluation of when to deploy 5G and when to blend it with other technologies. 

Suitable Scenarios for Enterprise 5G Deployments

Deploying 5G can be suitable for the following applications:

  1. High-Speed Connectivity Applications: In scenarios where ultra-fast data speeds and low latency are critical, like industrial automation, real-time analytics, and immersive AR/VR applications.
  2. Massive IoT Deployments: When deploying a massive number of IoT devices that require 5G’s enhanced capacity and support for a high density of connections.
  3. Mission-Critical Applications: For applications demanding robust and reliable connectivity, such as remote surgery, autonomous vehicles, and emergency response systems.
  4. Unreachable Locations: When extending wired connectivity is impractical, 5G can provide a cost-effective solution to connect remote or underserved areas.
  5. Future-Proofing: Choosing 5G as a long-term investment to accommodate future applications and services that demand higher data rates and network capabilities.
  6. Enhancing Campus-Wide Coverage: Deploying 5G across a large campus or facility to provide comprehensive coverage for various use cases and devices.
  7. Next-Generation Entertainment: For entertainment venues seeking to provide high-quality streaming, gaming, and interactive experiences to visitors.

Keep in mind to conduct a thorough assessment of specific use cases and technical requirements before opting for a 5G-only deployment. To learn more, read our article about the importance of Deploying Private 5G for Enterprises!

Key Use-Case Scenarios for Multiple Networks 

The integration of multiple network technologies offers a strategic advantage in various scenarios: 

  1. Separate Networks for Specific Environments: Enterprises may opt for separate networks indoors and outdoors or for on-site and off-site roaming. This separation caters to distinct connectivity needs within different environments. 
  2. Device-Led Network Integration: Certain devices are inherently tied to specific networks. A worker on a production line, for instance, may use Wi-Fi for a connected tool while wearing a 5G-connected headset for guidance. This scenario emphasizes the need to integrate networks based on device capabilities. 
  3. Migration Strategy: Transitioning from legacy networks to new infrastructures is a gradual process. Enterprises may need to run old and new networks in parallel to ensure smooth migration without disrupting operations. 
  4. Backup and Resilience: Multi-network integration enhances resilience against cyber threats, software bugs, and emergencies. Critical systems can switch between networks in the event of failures, ensuring continuity of operations. 
  5. Backhaul and Gateway Scenarios: Employing one wireless technology for backhaul to another’s access points optimizes cost and performance. Satellite backhauls, mmWave radios, and Wi-Fi meshes illustrate this strategy. 
  6. Bonded and Hybrid Networks: Combining diverse 4G/5G radios, public and private networks, and other technologies offers increased coverage, throughput, and efficiency. This approach is particularly relevant for applications like vehicle fleets, public safety agencies, and large campuses. 
  7. Shared Infrastructure and Tools: Enterprises can share physical infrastructure, network design tools, operations centers, and security platforms across multiple networks, fostering efficiency and collaboration. 

Source: Disruptive Analysis 

The Real-World Example: Airports 

To illustrate the practical application of these concepts, consider an airport. Airports extensively use wireless networks for passenger Wi-Fi, service vehicles, air-traffic control, and more. While these networks largely operate independently, specific scenarios demand integration. 

For instance, a private 5G network can serve service vehicles on the ramp, while public 4G/5G covers broader areas. Wi-Fi might bridge indoor and outdoor networks for seamless coverage. This example underscores the complexity of integrating networks based on diverse use cases. 

Examples of Wireless Network Combinations 

Consider the microcosm of an airport, where diverse networks serve different purposes. From passenger Wi-Fi to air-traffic control, each network often stands alone. Yet, scenarios arise where blending two platforms is vital, leaving room for expansion. 

Prominent network combinations include: 

In the current landscape, common combinations include: 

Private 4G + Private 5G: Many sites begin with LTE for private networks, often transitioning to 5G for advanced use cases. Others adapt from early “non-standalone” 5G networks, combining the technologies for enhanced capabilities. For instance, manufacturing plants blend private 4G for equipment monitoring with private 5G for real-time operations. 

Private 5G + Public 4G/5G: Common for users traversing localized and wide-area networks. Field workers in utilities travel between private sites and public networks, using dual-SIM devices for seamless connectivity. Airports use private networks for better indoor coverage while bridging to public networks for broader access. 

Private 5G + Wi-Fi: Vital hybrid combination with various technical approaches. Private 4G/5G backhauls enhance outdoor Wi-Fi access points. In-building Wi-Fi bridges to outdoor private 5G, for instance, connecting warehouse operations. Entertainment venues utilize Wi-Fi for visitors and private 5G for critical functions like payment terminals. 

Private 4G/5G + PMR: Industrial sectors adapt legacy private-radio systems with private 4G/5G for smoother transitions. Airports deploy private 4G/5G networks for ground staff while relying on older radios for baggage handlers. Utility field workers use private radios for maintenance and private 5G at newer facilities. 

Various hybrid wireless scenarios emerge: 

Countless other permutations exist, like private 5G with satellite or Wi-Fi combined with Bluetooth Low Energy for smart buildings. Yet, network complexity extends beyond technology integration, encompassing security, device management, and more. Commercial and HR considerations underline the need for astute integrator and service provider choices. 
 
Private 5G + Satellite: Industries in remote areas benefit from this blend, such as shipping companies or oil/mining exploration ventures. 

Wi-Fi + Bluetooth Low Energy: Smart buildings leverage Wi-Fi for well-powered equipment and Bluetooth Low Energy for battery-operated sensors. 

Private Cellular + LoRa: Large enterprise sites can integrate high data-rate users with low-power/low-volume IoT endpoints, enhancing connectivity and efficiency. 

Source: Disruptive Analysis 

Navigating Future Trends 

As we peer into the future, several trends will shape the landscape of network technologies: 

Private 5G’s Evolution: Private 5G networks will mature further, transitioning from trial deployments to production networks. Cloud-based network-as-a-service models will simplify deployments. 

Use-Case Stacking: Businesses will expand 5G usage within existing industry verticals, extending initial deployments to accommodate additional applications or coverage areas. 

5G Evolution and New Features: 5G will continue to evolve with new features and releases. Releases 17 and 18 will introduce precise positioning, ultra-low latency, and low-power IoT connectivity, expanding 5G’s capabilities. 

Innovation Across Technologies: Wi-Fi will advance with spectrum expansion and new features. Satellite networking will gain prominence, linked to 5G through non-terrestrial networks. Specialist service providers and system integrators will play a crucial role in delivering 5G solutions. 

Glimpses of 6G: Early discussions about 6G are underway, but its commercial viability for enterprises is distant. 5G’s impact will remain dominant until around 2030, with early trials and testbeds exploring future use cases. 

Designing 5G and Multi-Technology Networks 

The process of designing and integrating multiple networks, including the seamless incorporation of 5G, is a complex undertaking that demands meticulous planning and execution. Design considerations encompass coverage, capacity, network architecture, device compatibility, and more. The challenge lies in harmonizing diverse technologies into a cohesive framework that optimizes performance and meets operational needs. This intricate process calls for expert guidance and innovative tools to ensure successful implementation. 

Here, iBwave takes center stage, offering a comprehensive suite of wireless network design solutions. Whether it’s optimizing private 5G deployment, integrating Wi-Fi with 5G for seamless coverage, or incorporating satellite connectivity into the network mix, iBwave provides the tools and expertise needed to design multi-technology networks with precision. By leveraging iBwave’s advanced capabilities, businesses can confidently navigate the complexities of 5G and multi-network integration. iBwave’s seamless survey and design solutions enable enterprises to weave together the threads of connectivity, ensuring reliability, efficiency, and a future-ready network infrastructure that paves the way for innovation and success.  

You can leverage the capabilities of iBwave Private Networks for designing Private LTE, 5G and Wi-Fi seamlessly in one solution. You can also use our flagship solution iBwave Design for designing wireless networks for any type of inbuilding environment and network or iBwave Reach if you’re interested in designing indoor/outdoor campus networks. Whatever your network needs are, iBwave has you covered. Learn more about our solutions here
 

Conclusion 

In the intricate world of enterprise connectivity, the decision to deploy 5G or integrate multiple network technologies is far from straightforward. Balancing technical feasibility, financial considerations, legacy systems, and future-proofing requires a holistic perspective. As the technological landscape continues to evolve, enterprises must carefully assess use cases, select integrators wisely, and adapt to the dynamic interplay between 5G and other wireless solutions. By embracing a flexible and strategic approach, businesses can navigate the complexities and carve a path toward a connected future that maximizes efficiency and innovation. 

If you want to learn about 5G use cases and integrate multiple network technologies, read our eBook

Exit mobile version