R9 Sneak Peek: Software Selectable Radios #Comingsoon

With iBwave R9 about to launch in the coming weeks, we’ve slowly been hinting at some of the features that will be included.

This week, we’re here to talk about the new multi-radio/software selectable radio support that will be included in the R9 of iBwave Wi-Fi.

Why Multi-Radio APs?

As we all know, capacity planning is now critical to successfully designing high performance Wi-Fi networks in high-density venues. 

Multi-radio APs help to optimize capacity planning of a network and can save companies both equipment and troubleshooting costs. They are popular when it comes to high-density design venue and we’ve been getting more and more requests to support them within our software.

Starting with iBwave R9 we will now support Multi-Radio APs in our softwares. 

Here are a couple of the big reasons we see this new capability as valuable to our users:

Optimized Capacity Planning

Today, if a network designer wants to include a multi-radio AP in the design of a network, they need to overlay multiple single radio Aps on top of each to make ensure the capacity planning requirements are met. With the ability to now design with multi-radio APs, there is no more need to layer the single radio APs on top of one another and prediction results will be more accurate to reality – saving re-design and troubleshooting costs post-implementation of the network.

Below is an example of a Xirrus multi-radio module. In it, you can see the position of radio modules in the Access Point with the reference being radio Slot 1. The radio module slot can then contain either 2.4GHz or 5GHz radio module (software configurable) or it can be an empty slot. Any combination of 2.GHz/5GHz is possible to design with.

On each radio module, the configured channel and it’s output power per MIMO stream (excluding antenna gain) is shown.

An Accurate Bill of Materials 

Going back to the issue of layering single radio APs to simulate a multi-radio AP, this also meant that the bill of materials would be inaccurate – and as a result so could cost estimates.

In iBwave Wi-Fi, multi-radio APs will now be a part of the Bill of Materials that can be quickly generated under the ‘Reports’.

Here’s an example of a BOM with Cost Details, that includes Aerohive‘s AP550 Multi-Radio AP:

So what APs have we added?

We’re always adding new parts to our components database of over 25,000 parts but for this upcoming release here are the multi-radio APs we’ll have in our database ready to go:

  • Aerohive AP250
  • Aerohive AP550
  • Cisco AIR-AP2802E-x-K9
  • Cisco AIR-AP2802I-x-K9
  • Cisco AIR-AP3802E-x-K9
  • Cisco AIR-AP3802I-x-K9
  • Cisco AIR-AP3802I-x-K9C
  • Cisco AIR-AP3802P-x-K9
  • Xirrus XR-2226
  • Xirrus XR-2236
  • Xirrus XR-2426
  • Xirrus XR-2436
  • Xirrus XR-2436-WAVE2
  • Xirrus XR-4426
  • Xirrus XR-4436
  • Xirrus XR-4826
  • Xirrus XR-4836
  •  Xirrus XR-4836-WAVE2

What are the people saying about it?

We checked in with CWNE Ty Parker of Xirrus Riverbed who has this to say about our new capability to support the Xirrus Multi-Radio APs (and some other really nice things!):

The ability to design and visualize Wi-Fi networks in 3-D is a unique iBwave feature that I have come to rely on for access point placement and troubleshooting. The granularity iBwave provides is exceptional, especially with the new capability to design with multi-radio APs that are unique to Riverbed Xirrus for supporting high density Wi-Fi networks. Add to that the mobile tools and the variety of reports you can generate makes iBwave an invaluable tool for Wi-Fi deployment. – — Ty Parker, Director Solutions Engineering for Riverbed CWNE #173

And that’s it, a small sneak peek of our new Multi-Radio AP support in the upcoming version of our software. Watch for the new release of both iBwave Wi-Fi and iBwave Design, coming very soon!

Wirelessly yours,

Kelly

Wi-Fi Design Strategies in a Converged World Webinar: Your Questions Answered.

We had an amazing webinar on “Wi-Fi Design Strategies in a Converged World”. Our guest speaker Ronald van Kleunen, CEO of Globeron did a great job discussing why it’s important to understand the impact of convergence while designing high‑performing Wi‑Fi networks and how different wireless technologies can work together.

As promised Ronald, along with iBwave’s Vladan Jevremovic and Ali Jemmali took some time to answer most of the questions that were asked by our enthusiastic audience. This is the first in a series of blog posts where we will share these answer with you. So read on and feel free to comment and share your feedback.

And in case you missed this webinar or simply need a refresher, here is a link to the recording: Wi-Fi Design Strategies Webinar.

This week’s topic: Wi-Fi Design

1- How do you verify the design after implementation?

[Ronald]

RF Coverage validation can be done in iBwave Wi-Fi with the Site Survey tool (there is a Passive and an Active Survey option).

  • Passive means the Wi-Fi adapter is not connected to a network and visualizes RF coverage areas of different SSIDs (Service Set Identifiers) called an “RF Heatmap”
  • Active means, the adapter is connected to an AP (“BSSID – Basic Service Set IDentifier”, like a Single AP) or to an SSID (which can exist out of multiple APs covering an RF network)

To validate RF Capacity is a bit more difficult, there are some “Wi-Fi client simulators” creating multiple clients to connect to the AP (to test the capacity of the clients associating, throughput tests, etc.). Alternatively, real clients can be used, but this is very costly.

2- What are the expected trends of Wi-Fi design in the context of future 5G?

[Ronald]

Currently 5G is a hot topic for both outdoor and indoor “small cells” architectures for cellular and mobile devices, but one of the difficulties in many countries is the availability of the 5G Spectrum (700 MHz) and the auction model’s governments will implement for operators to bid-on. As an example, Singapore is one of the first countries that gave spectrum to do trials for 5G. Note that Spectrum management does not mandate the technology used in the assigned spectrum.

Both technologies will co-exist for several reasons:

  • Price (Wi-Fi / unlicensed spectrum = cheap vs 5G / licensed is expensive)
  • Adoption/Developers, more developers with Wi-Fi enabled equipment vs 5G (think about IoT over Wi-Fi, versus IoT over 5G)
  • Public wireless networks might be preferred by 5G, because of better roaming / coverage (e.g. over a country) vs Wi-Fi being limited in RF coverage and roaming options
  • Enterprises probably will stick to Wi-Fi for their own production network and operations, because of confidentiality of data to remain within the facility and not going via the DataCenters of the Telco providers

3- I want to know the weak, strong areas of the AP ‘s coverage

[Ronald]

Vladan of iBwave did an excellent presentation how to use iBwave Wi-Fi from an RF Design perspective (Ref: overcoming the capacity challenge available via this webinar link) , but also the survey tool will help to find the weak areas.

4- Capacity Planning & Channel/frequency Planning

[Ronald]

Yes this is covered for Wi-Fi and can be automated in the iBwave Wi-Fi tool for areas/zones, number of active devices and applications (e.g. e-mail and data requirements,voice requirements, etc.) it is very detailed.

Vladan of iBwave did an excellent presentation how to use iBwave Wi-Fi from an RF Design perspective (Ref: overcoming the capacity challenge available via this webinar link) , but also the survey tool will help to find the weak areas.

5- How do I design for capacity instead of coverage of Wi-Fi? How do 2×2:2, 3×3:3 or 4×4:4 APs differ in designing for capacity?

[Ronald]

Capacity – see Vladan’s webinar as he covered the RF capacity planning ((Ref: overcoming the capacity challenge available via this webinar link)

[Vladan / Ali]

2×2:2, 3×3:3 and 4×4:4 are different focusing on the spatial streams and Tx and Rx radios for max. DATARATES only  (thus not throughput as many factors impact the throughput). Streams to be used depends on the client as well what their capabilities are. To design, these APs need to be in the iBwave Wi-Fi tool which takes into account the Antenna RF propagation.

6- How accurate/ feasible is it to design networks without being physically present in the site?

[Ronald]

The RF planning tools can plan till a certain extent (including wall attenuation levels, etc.), but what cannot be planned in advance are:

  • Neighboring buildings with Wi-Fi and non-Wi-Fi devices operating in the same spectrum
  • Other devices in the building (e.g. Microwave ovens in 2.4GHz)
  • Other equipment in the building (e.g. metal cabinets, racks in a warehouse, storing different products at shelves in a supermarket)
  • People walking around the facility.

7- How does RF mapping gets affected by different flavors of Wi-Fi (802.11n, ac , ah etc…).

[Ronald]

In the RF mapping / planning tool, the way the technology works (like number of spatial streams, bandwidth 20 MHz, 40 MHz, 80 MHz, Transmit Output power settings of the AP, etc., protocol used) are all kind of variables impacting the RF propagation and RF Heatmap visualization (but there are more factors affecting it, like number of APs on the same channel, building materials like concrete walls, etc.).

8- How to remove Co-Channel Interference and how to measure it?

[Ronald]

Proper channel planning is important, but eventually multiple APs will be on the same channel (Co-Channel interference). SNR (Signal to Noise Ratio) is one of the factors for client devices to decide to which AP to connect to, but there are more factors (4x conditions: Physical Carrier Sense, Virtual Carrier Sense, IFS completed and Random Back-off Timer / Slots completed).

Adjacent Channel interference (overlapping channels is worse) as the APs cannot hear each other and therefor Co-Channel interface is a bit better as the Wi-Fi frame can be interpreted by the other devices on the channel. Furthermore, take into account Client Induced Interference as these are also radio transmitters and can affect the communication of other APs / devices on the same channel.

To measure Co-Channel interference:

  • Spectrum Analyzers
  • Reconnaissance tools
  • Protocol Analyzers
  • Integrated Site survey tools

9- During the recorded demo, you went from your predictive plan straight to installation, then conducted a verification survey afterwards. Would you not do a pre-deployment survey as well to collect surrounding passive data and confirm your predictive AP locations are correct within a live environment? (in case live propagation differs to your prediction).

[Ronald]

Correct (the demo was a bit focusing on key aspects), but you are right, that need to be added to video. The RF planning is done, but you always need to go on-site to understand the environment as it is always different than expected. Also, measurements need to be done to check the wall types and attenuation levels, leakage of neighboring buildings Wi-Fi networks, furniture in the office (like metal cabinets), other equipment operating in the same frequencies (like microwave ovens).

10- What are the main criteria to design a Wi-Fi network, is there a specific standard or a table showing different Service Levels?

[Ronald]

No there is not, as covered in the presentation there are several organizations involved in standardization and in progress for Wi-Fi networks by the WLAN Association (WLA)

In general, the approach works for any wireless network

  • Get the requirements (end-users, # devices, roaming, costs, etc.) “Red book”
  • Design the network “Blue book”
  • Install “White book”
  • Validate “Green book”
  • And in addition, there should be also one covering
  • Operate and Monitor

It is hard to give Service Availability Levels for wireless networks.

Here are some videos:

  • WSMS (Wireless Service Management System)
  • Need for Wireless Service & Security Standardization

11- Key parameter for design and planning requirement, Site Survey requirement, Planning guideline.

[Ronald]

Focusing on the Wi-Fi industry that is something that does not exist. There are books (like the Sybex version of the Certified Wireless Design Professional, but these are checklists of “what need to be done” and not “how it needs to be done”. The Wireless LAN Association (WLA) is in an initial progress looking into this (the 4x books, Requirement phase, Design phase, Implementation Phase and Validation Phase). Some vendors have a kind of wizard built-in and like iBwave parameters have been set already for different type of applications (like e-mail, voice, video traffic) and it can be customized as it depends also on the vertical market segment.

12- How should I consider APs that are on adjacent floors to provide Wi-Fi coverage and capacity? Or do I not consider those and design each floor independently?

[Ronald]

Correct. You typically design per floor level to have good RF coverage and Capacity for clients for different areas. If you have open spaces (like Atriums, you need to take that into account, maybe AP Transmit Radio Powers need to be reduced to avoid RF leakage through those Atriums, which means that suddenly clients see too many APs)

In the design tool (between the floors) you also need to see the attenuation levels (e.g. a very thick concrete floor or not), but if the APs can hear each other in 3D, then you also need to look at the Channel allocation that they do not interfere on the same channels (e.g. APs “stacked” on Channel 1).

13- I would like to know more about in-building design, Wi-Fi Design and DAS Design

[Ronald]

www.globeron.com/onlinetraining (Wi-Fi Training Certified Wireless Design Professional and also look into Certified Wireless Network Administrator as it covers RF, Spectrum, Protocols, Site Survey, Design, Analysis and Security)

BICSI 006-2015 Distributed Antenna System (DAS) Design and Implementation Best Practices https://www.bicsi.org/book_details.aspx?Book=BICSI-006-CM-15-v5

Go to the USA Conferences there are several presentations about DAS https://www.bicsi.org/single.aspx?l=1712

Winter Conference: https://www.bicsi.org/winter/2017/attendee.aspx?id=8734

14- How is Wi-Fi monitored i.e. capacity limits, interference, etc. just like other technologies?

[Ronald] 
There are several product vendors that have Wi-Fi Management systems where they get the information from the Wireless infrastructure components (like APs, Controllers, etc.). Some do only dedicated Wi-Fi Performance Management utilizing a centralized server and so called “Sensors” being deployed to monitor the Wi-Fi traffic and similar systems exist to monitor the Wi-Fi Security (Wireless Intrusion Detection / Prevention Systems) using Sensors. The advanced systems can do a combination and utilizing dual-band or tri-band APs were 1 or 2 radios provide Wi-Fi services (2.4 GHz and 5 GHz) and another radio provides Senso services

15- Is there anything on Wi-Fi SON (distributed or mesh) ?

[Ronald]

Self Organizing Networks (SON): https://www.qualcomm.com/news/releases/2016/01/05/qualcomm-launches-wi-fi-son-self-organizing-network-solutions-simplify-wi

I do not have experience with this “SON” technology and how it operates. It looks proprietary to certain vendors. Other vendors also have kind of “self-healing” type of technology, like Radio Resource Management (RRM), Adaptive Radio Management (ARM), Smart RF, Channel Fly, looking and optimizing the RF aspects, but the other key features mentioned in SON are also supported by most vendors:

SON – Key features include:

  • Self-configuring that enables plug-and-play deployment (most vendors support adaptive AP adoption to controllers/cloud and management)
  • Self-managing that offers autonomous performance optimization
  • Self-healing actively detects and resolves connectivity bottlenecks (as mentioned above)
  • Self-defending that secures the network from unauthorized access (integrated WIPS systems).

16- Do you have High Density WLAN examples?

[Ronald]

Here are more details related to High Density WLAN

[Ronald]

High Density at Airports 
https://www.globeron.com/freedownload/services/Globeron-Wi-Fly-or-We-Cry-7-Aug-2016.pdf

Next week’s topic: Convergence,  Stay tuned! 

Recap-How to Design High Capacity Wi-Fi Networks

Andrew von Nagy, Wi-Fi Expert and Owner of Revolution Wi-Fi was the guest speaker at our very successful webinar on “Designing High Capacity Wi-Fi Network’s”. The webinar also featured a Demo of iBwave Wi-Fi’s Capacity Planning capabilities by Sr. Manager Technical Product Management Marc-Antoine Lamontagne. During the webinar we received a large number of questions from attendees, some of which Andrew and Marc-Antoine were was able to answer live. However, we did not have time to answer all of them. This week Marc Antoine and Vladan Jevremovic, Research Director, iBwave took some time to address some key questions asked during the webinar. Read on and let’s keep the discussion going.

1- Can you please explain the impact of deploying access points with dual 5GHz radios on the design of high capacity Wi-Fi Networks?

The first advantage of using dual 5GHz radio is to offer twice the capacity from the same access points. Since you have 2 radios running on different channels you end up with air interface available to support more users and higher throughput. This type of architecture is made possible because of the high number of non-overlapping channels available on the 5GHz band. The second advantage is to reduce the cost of the deployment for high-density environment. Since you have 2 radios in the same access point, you end up with more capacity and keep the number of access points to a minimum. You can also save on installation cost by reducing the number of cables to pull in the ceiling in order to connect all the access points. From a Design perspective, having more than one radio in the same AP will augment the number of channels being used in that location and will reduce the channels that you can use for the other APs. This will increase slightly the risk of co-channel interference (CCI) in your design and decrease the capacity available for each AP since they are sharing the same air interface. Therefore, it will be important, as you validate your network, to look at the CCI (number of access points using the same channel with overlapping coverage). This is done in iBwave Wi-Fi using the CCI map. Also, since you are increasing the density of the channel being used, it will increase the zone of transitions between APs. It will be important to look at the location of these zones to make sure they are not located in areas of high usage. This can be done in iBwave Design using the Best Channel output map.

APs with dual (or more) 5GHz radios are not yet supported out of the box with iBwave Wi-Fi. Anyhow, a simple workaround can be used by creating 2 APs with each one using a different channel. We then have a method in iBwave Design to keep the bill of material accurate. We are currently in discussion with some manufacturers to see how we could better model this type of equipment more seamlessly.

2- How 3G & LTE offloading can be implemented using Wi-Fi and how capacity has to be planned accordingly?

HetNet Capacity modeling combining 3G, 4G and Wi-Fi applications is supported with iBwave Design Enterprise. The application allows precise definition of the market share between cellular operators, technology split between 3G and 4G and finally the % of expected traffic between cellular and Wi-Fi. Based on this information, the application automatically allocates the traffic on the right network and calculates the expected load for each one. In iBwave Design, it is also possible to configure LTE services for voice over LTE and voice over Wi-Fi.

When VoLTE is selected, the traffic is automatically assigned to the 3G service for the same operator. If VoWiFi is selected, the traffic is assigned to the Wi-Fi network. This creates a complete HetNet model to validate the overall quality of experience for the users considering the offload to different network technologies. At the end, the application allows you to validate your KPIs of capacity for each network service and the expected throughput available in average for the users.

3- What main inputs are you considering for Capacity Analysis? And how it relates to the Equipment Capacity? 

Equipment capacity is the maximum number of radios associated to an AP. This is specified by the manufacturer, and if the maximum number is reached, AP will decline further association requests. The manufacturer specifies this number based on their own hardware limitations. In our capacity algorithm, we calculate “airtime capacity”, as we look into files that need to be transmitted between AP and a radio. This is specified in our “user profile”, where we list applications that are likely to be used, and file size for each application. These files need to be transmitted over a user-defined period of time. The default is one hour, but it can be expressed in multiples of one hour. In our algorithm we calculate the actual air time required to transfer all files specified in a user profile, taking into account maximum throughput that each AP can achieve, which is based on radio conditions in the network (SNR, CCI, etc). We then multiply the required airtime for each user with a total number of users in AP coverage, to get the total air time needed to transmit all files for all users. Once the total required airtime reaches or exceeds the user-specified period of time, then the maximum number of users per AP has been reached, and no more users can be served with that AP. This is what we call “airtime capacity”.

Exit mobile version