Exploring Attenuation Across Materials & the 2.4GHZ / 5GHZ Bands

A Twitter post popped up in my news feed last week showing a graph of the attenuation values for different types of glass – mainly the distinction between a regular glass window and a low emissions (Low E) window. It was showing that Low E windows have a much higher attenuation value than regular windows—a fact that could impact prediction of a network significantly if the incorrect type of window is selected during modeling.

Turns out, it’s not so uncommon when looking across the different types of materials in ‘material families’ like glass, concrete, plaster, and wood – especially the heavier varieties. While looking into these different materials, I also started to see a trend amongst the ‘heavier’ types of materials like concrete—that attenuation values can even be different within the same material when comparing signal loss for 2.4GHz vs. 5GHz bands.

 2.4GHz Transmission Loss Value for 40 Yr Old Concrete ?

 5GHz Transmission Loss Value for 40 Yr Old Concrete ?

For many WLAN designs, this may not be such an issue because attenuation is often measured on-site using an AP on a stick – but what about for Greenfield buildings? Or when just providing a quote? Or doing a strictly predictive design? In these cases, there may be no walls to get the on-site readings or going on-site may just not be a possibility at that point in the project.

In this blog I look at two things:

  1. The difference in attenuation across the 2.4GHZ and 5GHZ bands for the same material, and the potential impact on prediction accuracy
  2.  The difference in attenuation values for materials in the same family, and the effect of selecting the wrong material when modeling.

Attenuation: Differences Between 2.4GHz & 5GHz Bands

As mentioned above, as I was looking at attenuation values through different types of materials I realized that there are quite a few ‘heavy’ materials that have significantly different attenuation values for the 2.4GHZ and 5GHz bands.

Some examples of significant and not so significant differences:

 2.4GHz (dBm)5GHz (dBm)
Concrete – Heavy22.79244.769
Lime Brick4.2957.799
Dry Wall Partition5.38810.114
Chip Board0.4630.838

As  it’s well known from theory and practice of radio propagation, as frequency increases, path loss increases. With materials, very similar thing happens – as frequency increases from 2.4GHz band to 5 GHz band, transmission loss will also increase. For example, using the concrete heavy example in the table above and imagine there is a concrete heavy wall between the AP and the client. At 2.4 GHz, the transmission loss is ~23 dB- meaning that as the signal goes through the wall it is decreasing by that amount of attenuation. Now if the operating frequency is changed to 5 GHz, the transmission loss is going to be higher because the frequency is higher – so in this case it goes to ~45 dB. This is most often the case with heavier materials, and although a difference can be seen in lighter materials, it would not have as much potential impact on prediction.

To illustrate this, I ran a prediction just showing the Free Space Path Loss for a single AP on 2.4GHz and 5GHz bands. In it the results show:

  • 2.4GHz: -33.46
  • 5GHz: -28.9

So with no obstruction, there is about a 4.57 dB difference in attenuation between the two bands. 

What’s the Potential Impact?

Next I wanted to look at what happens when there is an obstruction (in this case a concrete wall) and the potential impact on prediction results in this case. 

Adding a ‘Concrete-Heavy’ wall with the following attenuation values, I re-ran the signal strength heatmaps.

  • 2.4GHz : ~23 dBm
  • 5GHz : ~44 dBm

And got these results:

  • 2.4GHz: -55.42 dBm
  • 5GHz: – -81.86 dBm

To compare what would happen if I just used one attenuation value, I created a custom material by duplicating the ‘Concrete-Heavy” and assigning it just one attenuation value of ~33 dBM (the average of  the values for 2.4GHz & 5GHz above).

The results for that were:

  • 2.4GHz: –65.53 dBm
  • 5GHz: –70.09 dBm

From results (summarized in the table belowe),  it is seen that when we apply two values – one for 2.4Ghz and  one for 5GHz bands (23 dB and 44 dB), the difference in prediction between the two bands is significant. This difference is as expected because the heavy materials would have more attenuations in high frequency bands. However, when we apply only one value (33 dB) for the material that represents both bands, it’s noticed that the difference between the two bands is not significant (which it should be). 

Different Attenuation Values Across the Same Family of Materials

Next let’s look at the different attenuation values found within familes of the same materials. 

Staying focused on materials commonly used when modeling a venue, a couple of ‘material families’ started to stand out to me when looking at the range of attenuation values across the different types: Glass, Concrete, and Wood.

Glass

In the iBwave database of components, there are several different types of glass listed for used during modeling:

  • Electronic Equipment Glass
  • German Mirror Glass
  • Glass from Jena
  • Glass Window
  • Low E Glass
  • White Ceramic

Plotting their attenuation values from lowest to high, for both 2.4GHz and 5GHz bands, you get something that looks like this ?

Concrete

Perhaps one of the most common modeling materials is concrete – but when you start to look across the different types of concrete, including the age of the concrete, the attenuation values do not always look the same.

In our database, we list several types of concrete, here are a few that I looked at:

  • Cement
  • Concrete – 40 Years Old
  • Concrete – Double Heavy
  • Concrete – Dry without Steel
  • Concrete – Dry Wall
  • Concrete – Heavy
  • Concrete – Medium
  • Concrete – Light
  • Concrete – White Wall
  • Foam Concrete

That’s a lot of concretes to choose from when modeling – and when you look the range of attenuation values across them all, you can start to see why it would be important to model with the right concrete. ?

Plaster

In the database of materials, here are the different types of plaster you can choose when modeling the venue.

  • Drywall
  • Sheetrock (Heavy)
  • Sheetrock (Light)
  • Plaster Board / Ceiling Tile

And here’s what the different attenuation values look like compared to one another.

The Impact on Prediction

With that information, I started to wonder what the impact on prediction accuracy could be if a designer selected, say regular glass for a window when really it should be a low emissions glass often used now for newer buildings. Or what would happen if the venue was modeled with regular Concrete vs. older concrete for an older building – same with wood, what happens if the chipboard is used instead of particle board?

Let’s look at each of those scenarios and see what the potential impact on prediction accuracy could be.

Glass vs. Low E Glass

Using the floor of a regular, small, office space, I first ran prediction using the regular Glass for the windows and then replaced it with Low E glass to see what impact it would have on prediction were the wrong type of glass selected during modeling.

Results

 Glass Window (dBm)Low E Glass (dBm)Delta (dB)
2.4GHz-38.50-67.9129.41
5GHz-43.49-72.8529.36

Visual of the Different Signal Strength Heatmap Results

 You can see that in this case, using regular windows to model and design with when the windows are Low E windows, could be a very costly mistake – in both network performance, and the cost to troubleshoot it post-installation.

Heavy Concrete vs. Light Concrete

Next, I ran the same test, this time using two types of concretes, this time less extreme in attenuation differences: heavy concrete vs. light concrete.

 Light Concrete (dBm)Heavy Concrete (dBm)Delta (dB)
2.4GHz-40.32-55.2614.94
5GHz-53.41-81.9728.56

Visual of the Different Signal Strength Heatmap Results

Plaster

And last but not least, I tested the same scenario selecting Dry Wall vs. Sheetrock (Light) to see what the potential impact on prediction might be – and while not as drastic a difference in this example, a difference can still be noticed, more so on the 5GHz band. 

 Dry Wall (dBm)Sheetrock (Light) (dBm)Delta (dB)
2.4GHz-41.45-36.954.5
5GHz-51.18-42.248.94

Visual of the Different Signal Strength Heatmap Results

In Conclusion…

It was fun to dive into the attenuation values a bit more and how they can potentially impact the network prediction results of a network design.  And in fact, it is part of the conversation many of our customers talk to us about when it comes to modeling accuracy – the more accurate the modeling is, including materials and attenuation values, the more accurate the design and prediction results will be.  One of our customer CTS, discussed this point among a few others in a previous blog post about how modeling errors can lead to RF performance and cost issues. 

Read: How Poor Modeling Can Impact RF Performance and Costs

If you made it this far, I hope you found it interesting – let me know if you have any comments or questions! 

Wirelessly yours,

Kelly

The Impact on Prediction of Modeling Body Loss in High-Density Venues

Forever on a quest to improve the accuracy of network predictions in our software, we recently released a new feature called “Body Loss Modeling.” With Body Loss Modeling, you can now account for the attenuation caused by bodies packed into a tight space together in your design – most useful for high-density venues like stadiums, arenas, or conference centers.

In this blog, I use the design of a basketball arena to examine the impact the body loss modeling feature can have on the prediction results of a network design. 

I do that by isolating a small section of the arena seating, placing an Access Point and then looking at the results of both the Signal Strength and SNR heatmaps under two scenarios:

  1. No Body Loss Modeling
  2. With Body Loss Modeling

At the end, I’ll summarize the comparison and discuss the potential impact of the results.

Here is the basketball arena I am using, and the specific seating area looked at in this blog.?

Results: No Body Loss Modeling

Keeping the prediction zone identified as a regular prediction area, I ran the Signal Strength and SNR heatmaps for the 5GHZ band and then used the “Probe” tool to zone in a very specific seating area in the bottom right hand side of the prediction zone (circled). 

Here are the results. 

Signal Strength Heatmap Results

  • 58.85 dBM {Inclined Surface Area}
  • 58.95 dBM {Horizontal Surface Area}

 And zoomed in… ?

SNR Heatmap Results

  • 29.55 dB (Inclined)
  • 29.75 dB (Horizontal)

 And zoomed in …?

Results: With Body Loss Modeling

Next, I assigned the same prediction area as a ‘Body Loss Zone’ and then re-ran the Signal Strength and SNR heatmap prediction results.  To identify a body loss zone in iBwave Wi-Fi or iBwave Design, you have to first configure the ‘Body Loss Zone’ (unless you just want to use the default), and then assign your prediction area as that particular body loss zone. 

Here is the configuration I set up and called ‘Arena Seating’ ?

And here is how I assigned the prediction area as the body loss zone I configured above. ?

With the prediction area now identified as a ‘body loss’ zone, the prediction engine will factor in attenuation caused by tightly packed bodies within that seating area.

Here are the results ?

Signal Strength Heatmap

  • Incline Surface: 68.20 dBm
  • Horizontal Surface: 67.88 dBm

SNR Heatmap

  • Incline Surface: 21.28 dB
  • Horizontal Surface: 21.44 dB

Comparing Results 

To easily compare the prediction results with and without body loss factored in, I put the results into a table.

  No Body LossWith Body Loss The Difference
Signal Strength58.85 dBm68.20 dBm-9.35 dB
SNR29.55 dB21.28 dB-8.27 dB

Looking at the table,  you can start to see the potential impact that modeling bodies in high-density environments can have on the accuracy of prediction results – and thus on the potential performance of the network post-installation.

In this case, before I modeled body loss into the design, the signal strength is predicted to perform pretty decently with a 58.85 dBM signal strength.  With the attenuation due to bodies factored in, the signal strength loses almost 10 dB, which pushes it towards a much less desirable signal strength and could significantly impact the user experience when it comes to critical applications like video streaming or VoWiFi. 

Looking at the SNR heatmap, a similar story is supported, even emphasized – before body loss is considered, the SNR sits at a pretty acceptable level of 29.55 dB. After body loss is factored in, the SNR level drops to 21.28 dB – making it even more likely that those critical apps will work as expected for the user. 

For the network engineer designing the network, this means she or he needs to factor in that while prediction results without body loss factored in can show acceptable performance results, it could be misleading in high-density venues – which can lead to undesirable and costly consequences later on. 

When prediction during the design phase is not accurate, it can lead to more site visits post-install, and possibly re-design work which is all more downtime and cost for the property owner. 

How do you factor in body loss into your wireless designs? Let me know in the comments below.

Wirelessly yours,

Kelly

Interested in learning more about iBwave Wi-Fi? Read more about it here, or try out a 15 day free trial. 

Dense Network Architecture – Why is it Important Now and Why Should You Care?

Dense Network Architecture – Why is it Important Now and Why Should You Care? 

For the last 15 years iBwave has supported the majority of the carriers in the world through millions of in-building network deployments as they focused on a smooth and secure transition to the next generation of technology e.g. 3G to 4G. For the next 15 years we plan to accompany our carrier and enterprise customers on the same successful path where DNA (Dense Network Architecture) will play a central role.

DNA is the Path to 5G

With the completion of the first 5G new radio 3GPP standard, the wireless industry is in the final dash towards commercialization of 5G technology potentially by 2019. Major wireless carriers are actively conducting trials to prepare for the fast approaching commercialization phase of 5G. As an integral part of the wireless eco-system, iBwave is working closely with its partners to ensure that they are well-prepared for this final step. We have a clear vision today that networks are becoming denser, this is true from a couple of different perspectives. First, we see the fixed architecture is evolving towards richer fiber-based networks for both backhaul and fronthaul. Second, we see that there is a densification of Radio APS from 3G to 4G and also in Wi-Fi with the number of global Wi-Fi hotspots growing exponentially, and forecasted to grow by 454 million by 2020 (Statista). Also, a total of 2.3 million Small Cells were being shipped last year (Source: RCR).

Don’t Forget the 3 80s

Industry trends and numbers shows that data traffic is increasing at a rate of 80% per year, we also know that 80% data traffic originates in-building and that 80% enterprises are ready to switch providers if they get better indoor coverage in an effort to improve customer experience. We can call this the 3-80’s rule and if you look at it you should start thinking of your Dense Network Architecture (DNA), from an in-building standpoint. It is important to take this approach because this is where most of your traffic is happening and this is where most of the enterprises will focus their energies to improve quality of customer experience. Today however we are not seeing this mindset as a majority of the early 5G trials are happening outdoors.

Ensure Your In-Building Networks Are 5G Ready

To address the above, at iBwave we think that 5G trials need to be conducted indoors alongside the existing outdoor trials, to highlight potential deployment issues for your Dense Network Architecture (DNA). Potential issues such as the current structured cabling and whether it supports DNA, or not? We have to move into a fiber-rich architecture inside the building, we need to figure out whether passive optical LAN is going to replace the typical CAT 5 or CAT 6 structure cabling? The 3 80’s rule should make us focus much more on in-building because that’s where the traffic is. This will help us pin point potential issues which might be very critical, for example whether the current cabling CAT 5 and CAT 6 is able to handle 5G or whether this next gen technology requires fiber rich networks inside the building.

Ask the Insiders

iBwave is happy to help our Carrier and Enterprises customers navigate the world of DNA and 5G networks by helping them prepare in advance and choose the best options. If you are an enterprise and you are curious about hearing what DNA and 5G will mean for you then come talk to us.

Send us your comments below or  ask us a question here

Exit mobile version