5G vs. Multiple Network Technologies: Enterprise Connectivity Dilemma 

In the ever-evolving landscape of connectivity solutions, enterprises face a pivotal decision – whether to embrace the promise of 5G or deploy a blend of multiple network technologies. While the allure of a 5G-centric future is undeniable, practical considerations and real-world complexities necessitate a more nuanced approach. This article delves into the key factors that influence the choice between deploying 5G and integrating multiple network technologies, exploring use cases, considerations, and future trends. 

The Complex Reality of Enterprise Connectivity 

The widespread anticipation surrounding 5G’s transformative potential is undeniable. However, the practical reality is far more intricate. Enterprises operate within a realm where a myriad of connectivity solutions coexist, each catering to unique demands. Wi-Fi, IoT-dedicated systems, Bluetooth, and others are evolving alongside 5G, presenting a diverse ecosystem of options. 

The notion of a 5G “monoculture” is compelling, but it clashes with a host of commercial, technical, and regulatory constraints. These constraints encompass legacy systems that perform well, lack of suitable 5G devices for IoT, frequency band limitations, higher costs, certification requirements, skill shortages, geopolitical restrictions, and more. These realities necessitate a thorough evaluation of when to deploy 5G and when to blend it with other technologies. 

Suitable Scenarios for Enterprise 5G Deployments

Deploying 5G can be suitable for the following applications:

  1. High-Speed Connectivity Applications: In scenarios where ultra-fast data speeds and low latency are critical, like industrial automation, real-time analytics, and immersive AR/VR applications.
  2. Massive IoT Deployments: When deploying a massive number of IoT devices that require 5G’s enhanced capacity and support for a high density of connections.
  3. Mission-Critical Applications: For applications demanding robust and reliable connectivity, such as remote surgery, autonomous vehicles, and emergency response systems.
  4. Unreachable Locations: When extending wired connectivity is impractical, 5G can provide a cost-effective solution to connect remote or underserved areas.
  5. Future-Proofing: Choosing 5G as a long-term investment to accommodate future applications and services that demand higher data rates and network capabilities.
  6. Enhancing Campus-Wide Coverage: Deploying 5G across a large campus or facility to provide comprehensive coverage for various use cases and devices.
  7. Next-Generation Entertainment: For entertainment venues seeking to provide high-quality streaming, gaming, and interactive experiences to visitors.

Keep in mind to conduct a thorough assessment of specific use cases and technical requirements before opting for a 5G-only deployment. To learn more, read our article about the importance of Deploying Private 5G for Enterprises!

Key Use-Case Scenarios for Multiple Networks 

The integration of multiple network technologies offers a strategic advantage in various scenarios: 

  1. Separate Networks for Specific Environments: Enterprises may opt for separate networks indoors and outdoors or for on-site and off-site roaming. This separation caters to distinct connectivity needs within different environments. 
  2. Device-Led Network Integration: Certain devices are inherently tied to specific networks. A worker on a production line, for instance, may use Wi-Fi for a connected tool while wearing a 5G-connected headset for guidance. This scenario emphasizes the need to integrate networks based on device capabilities. 
  3. Migration Strategy: Transitioning from legacy networks to new infrastructures is a gradual process. Enterprises may need to run old and new networks in parallel to ensure smooth migration without disrupting operations. 
  4. Backup and Resilience: Multi-network integration enhances resilience against cyber threats, software bugs, and emergencies. Critical systems can switch between networks in the event of failures, ensuring continuity of operations. 
  5. Backhaul and Gateway Scenarios: Employing one wireless technology for backhaul to another’s access points optimizes cost and performance. Satellite backhauls, mmWave radios, and Wi-Fi meshes illustrate this strategy. 
  6. Bonded and Hybrid Networks: Combining diverse 4G/5G radios, public and private networks, and other technologies offers increased coverage, throughput, and efficiency. This approach is particularly relevant for applications like vehicle fleets, public safety agencies, and large campuses. 
  7. Shared Infrastructure and Tools: Enterprises can share physical infrastructure, network design tools, operations centers, and security platforms across multiple networks, fostering efficiency and collaboration. 

Source: Disruptive Analysis 

The Real-World Example: Airports 

To illustrate the practical application of these concepts, consider an airport. Airports extensively use wireless networks for passenger Wi-Fi, service vehicles, air-traffic control, and more. While these networks largely operate independently, specific scenarios demand integration. 

For instance, a private 5G network can serve service vehicles on the ramp, while public 4G/5G covers broader areas. Wi-Fi might bridge indoor and outdoor networks for seamless coverage. This example underscores the complexity of integrating networks based on diverse use cases. 

Examples of Wireless Network Combinations 

Consider the microcosm of an airport, where diverse networks serve different purposes. From passenger Wi-Fi to air-traffic control, each network often stands alone. Yet, scenarios arise where blending two platforms is vital, leaving room for expansion. 

Prominent network combinations include: 

In the current landscape, common combinations include: 

Private 4G + Private 5G: Many sites begin with LTE for private networks, often transitioning to 5G for advanced use cases. Others adapt from early “non-standalone” 5G networks, combining the technologies for enhanced capabilities. For instance, manufacturing plants blend private 4G for equipment monitoring with private 5G for real-time operations. 

Private 5G + Public 4G/5G: Common for users traversing localized and wide-area networks. Field workers in utilities travel between private sites and public networks, using dual-SIM devices for seamless connectivity. Airports use private networks for better indoor coverage while bridging to public networks for broader access. 

Private 5G + Wi-Fi: Vital hybrid combination with various technical approaches. Private 4G/5G backhauls enhance outdoor Wi-Fi access points. In-building Wi-Fi bridges to outdoor private 5G, for instance, connecting warehouse operations. Entertainment venues utilize Wi-Fi for visitors and private 5G for critical functions like payment terminals. 

Private 4G/5G + PMR: Industrial sectors adapt legacy private-radio systems with private 4G/5G for smoother transitions. Airports deploy private 4G/5G networks for ground staff while relying on older radios for baggage handlers. Utility field workers use private radios for maintenance and private 5G at newer facilities. 

Various hybrid wireless scenarios emerge: 

Countless other permutations exist, like private 5G with satellite or Wi-Fi combined with Bluetooth Low Energy for smart buildings. Yet, network complexity extends beyond technology integration, encompassing security, device management, and more. Commercial and HR considerations underline the need for astute integrator and service provider choices. 
 
Private 5G + Satellite: Industries in remote areas benefit from this blend, such as shipping companies or oil/mining exploration ventures. 

Wi-Fi + Bluetooth Low Energy: Smart buildings leverage Wi-Fi for well-powered equipment and Bluetooth Low Energy for battery-operated sensors. 

Private Cellular + LoRa: Large enterprise sites can integrate high data-rate users with low-power/low-volume IoT endpoints, enhancing connectivity and efficiency. 

Source: Disruptive Analysis 

Navigating Future Trends 

As we peer into the future, several trends will shape the landscape of network technologies: 

Private 5G’s Evolution: Private 5G networks will mature further, transitioning from trial deployments to production networks. Cloud-based network-as-a-service models will simplify deployments. 

Use-Case Stacking: Businesses will expand 5G usage within existing industry verticals, extending initial deployments to accommodate additional applications or coverage areas. 

5G Evolution and New Features: 5G will continue to evolve with new features and releases. Releases 17 and 18 will introduce precise positioning, ultra-low latency, and low-power IoT connectivity, expanding 5G’s capabilities. 

Innovation Across Technologies: Wi-Fi will advance with spectrum expansion and new features. Satellite networking will gain prominence, linked to 5G through non-terrestrial networks. Specialist service providers and system integrators will play a crucial role in delivering 5G solutions. 

Glimpses of 6G: Early discussions about 6G are underway, but its commercial viability for enterprises is distant. 5G’s impact will remain dominant until around 2030, with early trials and testbeds exploring future use cases. 

Designing 5G and Multi-Technology Networks 

The process of designing and integrating multiple networks, including the seamless incorporation of 5G, is a complex undertaking that demands meticulous planning and execution. Design considerations encompass coverage, capacity, network architecture, device compatibility, and more. The challenge lies in harmonizing diverse technologies into a cohesive framework that optimizes performance and meets operational needs. This intricate process calls for expert guidance and innovative tools to ensure successful implementation. 

Here, iBwave takes center stage, offering a comprehensive suite of wireless network design solutions. Whether it’s optimizing private 5G deployment, integrating Wi-Fi with 5G for seamless coverage, or incorporating satellite connectivity into the network mix, iBwave provides the tools and expertise needed to design multi-technology networks with precision. By leveraging iBwave’s advanced capabilities, businesses can confidently navigate the complexities of 5G and multi-network integration. iBwave’s seamless survey and design solutions enable enterprises to weave together the threads of connectivity, ensuring reliability, efficiency, and a future-ready network infrastructure that paves the way for innovation and success.  

You can leverage the capabilities of iBwave Private Networks for designing Private LTE, 5G and Wi-Fi seamlessly in one solution. You can also use our flagship solution iBwave Design for designing wireless networks for any type of inbuilding environment and network or iBwave Reach if you’re interested in designing indoor/outdoor campus networks. Whatever your network needs are, iBwave has you covered. Learn more about our solutions here
 

Conclusion 

In the intricate world of enterprise connectivity, the decision to deploy 5G or integrate multiple network technologies is far from straightforward. Balancing technical feasibility, financial considerations, legacy systems, and future-proofing requires a holistic perspective. As the technological landscape continues to evolve, enterprises must carefully assess use cases, select integrators wisely, and adapt to the dynamic interplay between 5G and other wireless solutions. By embracing a flexible and strategic approach, businesses can navigate the complexities and carve a path toward a connected future that maximizes efficiency and innovation. 

If you want to learn about 5G use cases and integrate multiple network technologies, read our eBook

Wi-Fi 6: The Key Features

Wi-Fi 6 is largely based around the new radio specification, 802 .11ax, plus additional features such as mandatory WPA3 security. Unlike previous upgrades to Wi-Fi, the main focus is not on ever higher peak speeds, but instead on better efficiency, predictability and reliability of the connections. This reflects the requirements of the modern enterprise and consumer wireless marketplace, and expected mid-term trends.

Remember that Wi-Fi 5, previously known as 802 .11ac, was first launched in 2013, with the requirements and standards work having been done over the previous 3 years. At that point of conception in 2010, iPhones and Android devices were still something of a novelty, especially in enterprises. The Wi-Fi world still revolved around laptops – which were themselves often seen as more convenient alternatives to desktop PCs, rather than the default computing device for most workers.

By contrast, Wi-Fi 6 has been born into the era of wireless-first users, IoT transforming business processes, and an array of new mobile/cloud computing and data-access paradigms. Its core features and improvements reflect that.

Without delving too deeply into the underlying technology, the key aspects to be aware of include:

  • OFDMA (Orthogonal Frequency Division Multiple Access) is a change from older Wi-Fi versions’ OFDM (M=multiplexing), which in essence allows radio channels to be split into sub-units. This improves the management of traffic, increasing both overall network capacity and allowing for much more “deterministic” connectivity. Particular devices or applications can receive more reliable QoS (quality of service) than in the past. There is less risk of contention, congestion or delay. This makes the technology much better-optimized for demanding use-cases such as VoIP or time-sensitive industrial automation. This is very important for the Wi-Fi community, as the growing interest in private/enterprise 5G poses a competitive threat.
  • MU-MIMO & Transmit Beamforming: (Multiple-User, Multiple-In, Multiple-Out). MIMO refers to a technique of using multiple antennas to form radio signals into “beams”. This has been around in several previous versions of Wi-Fi, but is now standardized in a form that allows multiple simultaneous beams to be supported by an AP, connecting to several devices concurrently for both down- and up-link. Up to 8 streams can be supported.
  • 1024-QAM (quadrature amplitude modulation mode), which is a new RF modulation enhancement, increases throughput speeds by up to 25%.
  • BSS Coloring: This is a technique for dense deployments, which allows multiple APs and devices to use the same RF channels, but with less interference and thus higher effective capacity.
  • Target Wait Time: This is a mechanism by which Wi-Fi clients and APs can pre-negotiate to schedule future connection timings, allowing the devices’ radios to remain idle most of the time, and thus saving battery life. It should be particularly important for IoT use-cases such as sensors, where permanent connectivity is not essential – they can send/receive data in batches, rather than keeping the radio alive for continuous transmission.

One other important development is around spectrum used by Wi-Fi 6. Currently, the world’s Wi-Fi works in two main bands – 2 .4GHz and 5GHz – both available on an unlicensed basis. While there are differences in some areas because of certain channels being occupied by other applications, there is global consistency. This harmonization has been key to Wi-Fi’s past growth.

In future it will be desirable to add new bands to improve capacity further. However, as is also the case with the cellular industry (and broadcasting and satellite), finding new global bands is tricky. The Wi-Fi 6 industry may have to deal with regional variations, either in the width of the band, or precise regulations on power and coexistence with other users. Fortunately, the silicon industry (and regulatory spectrum management) is becoming more sophisticated, so various approaches should emerge. We may see more spectrum-sharing and dynamic allocation mechanisms.

The most promising band for Wi-Fi in the near future is in the 6GHz range. In the US, it seems likely that 1GHz or more may become available in this band in the next 2 years, coinciding with many Wi-Fi 6 deployments. Europe is also looking at 6GHz, but with less overall capacity and perhaps some form of sharing with 5G cellular. The exact shape of this band is one of the unknowns at present, but for which deployments should be future-proofed.

In any case, it seems likely that any new 6GHz band will only be certified for Wi-Fi 6 and OFDMA, in order to maximize the benefits of the new standard. Older variants of Wi-Fi will be confined to 2.4GHz and 5GHz.

The above is an excerpt from our free eBook Wi-Fi 6 and Enterprise Networking Convergence by guest writer Dean Bubley. Click here to download the full version.

More Wi-Fi 6 Resources

Want to get into the specifics of Wi-Fi 6 design? Download our Wi-Fi 6 Wireless Standards quick reference poster.

What does Dean think of convergence and the evolution of indoor networks? Read his guest blog article to find out!

Or, learn the Do’s and Dont’s of Stellar Wi-Fi design in our exclusive webinar.

LOL OMG BBQ?! – Understanding Wireless Industry Acronyms

Any time you start a new career, there’s a dictionary sized list of words you need to learn before you start to feel knowledgeable about the industry you work in. To make things even more intimidating, your coworkers are probably so used to wireless industry jargon that they use acronyms to keep things concise.

The problem? If you don’t know the acronym, how are you supposed to know what the heck they’re talking about? The wireless design industry has a whole slew of baffling acronyms that can look like gibberish to an outsider. Luckily, we’ve compiled a list of the most common wireless acronyms heard around the globe as well as a brief explanation on what they refer to. Next time your boss asks you which BTS and APs can be found on the BOM, you can reply with confidence!

Wireless Industry Acronyms:

AP: Access Points. Networking hardware that allows a Wi-Fi compliant device to connect to a wired network.

BTS: Base Transceiver Station. The network entity which communicates with the mobile station.

BOM: Bill of materials. A document outlining all the equipment necessary to install and deploy a wireless network.

DAS: Distributed Antenna System. A network of spatially separated antenna nodes connected to a common source that provides wireless service within a geographic area or structure. You can learn more about DAS here.

KPI: Key Performance Indicators. A performance indicator is a type of performance measurement. In the context of the wireless industry, it refers to metrics intended to measure the accuracy and capacity of wireless networks.

LTE: Long-Term Evolution. A standard for high-speed wireless communication for mobile phones and data terminals.

MAPL: Maximum acceptable path loss.

MIMO: Multiple-input and multiple-output. A method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multi path propagation.

RF: Radio Frequency.

SINR: Signal to interference plus noise ratio. A quantity used to give theoretical upper bounds on channel capacity (or the rate of information transfer) in wireless communication systems.

WLAN: Wireless local area network.

Want more helpful wireless network design resources? Check out our wireless reference posters.

Have you seen or heard a wireless industry acronym that we didn’t list here? Ask us about it in the comments and we’ll explain it to you!

Exit mobile version